b7

On the other hand, applying _81_ to Hamilton-Jacobi gives the following

4 dq
"derived H-J equation:

2 2
9H 9°s
(2) 0= 2.5 + aH (ndSJ + E =i

i ]
- ot 8q1 ' aql pj aq;‘aq"
5% 5%s
Now — = —— . Hence subtracting the last two equations gives
Jo,l 1,1
9q79q 8q 8q |

(with suitable arguments)

(3) o8 9H
at i

This is the second half of Hamilton's equations.
In the last equation everything is to be regarded as a function of t.
The "suitable arguments" required to make this the case are indicated

without ambiguity by the diagram of the functions involved.
H

IR TE ——am TR
c)
> Tds
I — » IXC

(1,b)
It should be possible to make a systematic use of such mapping diagrams
to indicate which (composite) arguments we intended in equations (such as
the Hamilton and Hamilton-Jacobi equations),
Now consider the converse part of the theorem. Take a solution b of
the first Hamilton equations; then equations (1) above hold. By hypothesis
(1) implies (3); subtracting, (2) holds along b. But by the existence

theorem for ordinary differential equations, there is a solution b through
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each point of IX C; hence (2) holds at any point (t, qi, S 3 qn). But

(2) states that N
_i_(HJ(S))= 0 ’ izii"'lnl

9q
where HI(S) denotes the left-hand side of the Hamilton-Jacobi equations.

¢ PIS) Fpta i T A
! Therefore, there is a smooth function 6:IR = IR with

HJ(S) = 9ot: I X C = IR. Take a function ¢ such that %;E = 0. Then'it is

not hard to see that
HJI(S - ¢) = 0.

This gives the conclusion of the theorem.

44. Transformation to Equilibrium.

Now let Y be an n-dimensional manifold, and suppose

S_:RXCXY-R is a function such that everywhere

9%s

det :
8q' 9y’

Z0

J

i : ;
where q arecoordinates for C andthe y  are coordinates for Y.

Let @:RXCXY—=RXT C be given by

9s
P.® = —3
aq
t® =t
q1®= ql, i=1,...,n.

Thus the assumption on S is equivalent to saying that @ is regular
everywhere. Consider also the mapping W:IRXC XY - RXT'Y

given by
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tvo =

i i

yv=y

x_\II=£ , i=1,....n,
i 8yi

where the y1 are coordinates on Y and the X, the corresponding
(momentum) coordinates on T'Y. This map is also regular everywhere.

Hence we have the diagram

RXCXY=N |,
and locally at least there is a map y from one time dependent phase
space to another (compare §26).

Theorem. Take H:IRX T'C—+ IR. For each point a ¢ Y, suppose
that S:N = IR satisfies the H-J partial differential equation for the
function H. Let c:IR IR X T 'Y be a curve of the form c(t) = (t, const. ).
Then the curve yxc satisfies the Hamilton equations for H on R X T C.

Proof. It will be more convenient to look at everything in N rather
than in R X T"C. To do this we pull everything back locally by @.,1 g

) -1 g
Thus we are interested in the curve ¥ "¢ and the function H®

Let X, denote the coordinates as above. Then x, = ;: on N.
i
. d .
Taking T of this, we get
o - 5°s N 2°s ad P S 38 By
dt i ot

8y18t Bylaq'] : oy ByJ
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i
The third sum vanishes because %EL = 0. Since we are assuming

9S
2t +H=0

on N (more precisely, we should write H@ instead of H), applying

_31_ yields 2 2
dy" 8%, 8H ais_ = B,
atay" ap”  aq'ay’

which holds on the curve \If-ic. Hence, again on the curve,
z 325 ( - oH ) =0
1s dt p, )
9q 9y’ 3
2

Since the determinant of ( —— Bd

9q oy’

——— ) was assumed to he non-zero, this

means that
dq’ 9H

' dt op.
pJ
holds for all j. T his is the first Hamilton equation. By the previous
theorem, we get the remaining half of the Hamilton equations.

For fixed to’ the submanifolds of N of the form to X CXY havea

symplectic form given by
2

—2>_dq'a ay’ .
dq 83#1
By the theorem proved in §‘26 of Part I, the functions @ and ¥ are
symplectic mappings, whence the usual symplectic structures are taken
on T°C and T'Y.
In the theorem just proved, the trajectories ¢ in RX T°Y are

" . : -1
constant in T Y. Hence one says that the map ¥ of the theorem

transforms the Hamiltonian H "to equilibrium".
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45, Characteristics.

The previous results indicate a close relation between the Hamilton-
Jacobi equation, a partial differential équation,and Hamilton's equations,
a system of prdinary first order differential equations. This is a
special case of the theory which relates a first order partial differential
equation to its characteristics, which are solutions of a corresponding
system of ordinary first order differential equations.

Sources: a) Courant and Hilbert, Methods of Mathematical Physics, II

b) Caratheodory, Calculus of Variations and PDE's of { BE

order, Part I.
The case of the arbitrary first order equation will be reached in

stages. We first consider the linear case, involving the following functions

on a configuration space C:

C u

R ' ® > R,
i n
q,.,9
" ai:C-']R,
ou
(1) 21: aia_i = bu+d |, b: C - R,
= 4 d: ¢~ R

Equation (1) for the linear case has 2. b,d functions of position in C.

The a, determine a vector field X = E! 0
! i=1 aql

on C which appears in .

the following coordinate independent form of (1): LXu =bu+d. Call ¢

a characteristic curve of the PDE (1) when

i
1 |
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Thus the characteristics are the trajectories of the vector field X. In

view of the definition of X, this equation can be written as

duc
1
(2') ™

First suppose that b =d = 0. Then if the function u satisfies the PDE (1), f_,%!,/

=bu +d.

o B3

it is constant along the characteristics of (1). More generally, for any b
and d, the equation states that the values of u along a characteristic
are determined by the value at any one (initial) point there. This sug-
gests that we can obtain a solution u by taking initial values along a suit-
able set S, and then prolong these values by solving (2').

More explicitly, find a sul;amanifoldv S of dimension n-1 transverse

to X (i.e., with T,C=TS® IRX(a) at each point a of S). According
X .

S

to the basic theorem on the integration of (smooth) vector fields, the tra-

jectories of X through S cover some neighborhood of S, determining

o o
on some neighborhood of any S a unique function u which agrees on S

o
with some chosen uo:S - IR, and which satisfies (2) along characteristics

o
(trajectories of X) onthe neighborhood. Here S is an open submanifold
of S with compact closure in S. In local coordinates it is immediate

that, for smooth u_, the function u is smooth and satisfies (1). So we

have found a local solutuon.
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Next we consider a first order P.D.E. in an unknown u, of the form

n
0 1 1 n
(1) Ea(uq..-.,qn) S =b(u,q ,...5q) , u=ulq,..,q).

Bql

This is linear in all the partial derivatives of u, but not in u itself,

. - oy 2 1 n )
hence is said to be quasilinear. We interpretthe q ,...,q as coordi-
nates in an n-dimensional configuration space C, so that u:C = IR. The
equation thus has the form

(1) S o
i=1

9q

24

e = IRXQ—;—»/‘E?]R,
1

for given coefficient functions a, and b.

We plan to reduce this to the previous case for a linear P.D.E. in

—_— i
an unknown v:IR XC in one more variable, constructing the function u

A

via its graph f:C =2+ RXC. Let r:RXC —~ R be the projection on

the first coordinate. We_ introduce a function v:IR X C s IR defined

by v=u-r. Now -g%- = -1 and a‘; = Bui (while on hypersurfaces
9q 9q

v = 0 we will have ai(u, q}) = ai(r, q) and b(u, q) = b(r, q)) so that (1)

becomes

n
= Ea_‘
1

=1 ' aq i=

n n
dv dv 3 5
= + —_— = + — i
.21 *i13q, @ or (21=1 %i9q barV

This is a homogeneous linear P.D.E. in v:IR X C = IR. Its charac-
teristics are thus given by a suitable vector field X. Indeed we now de-
9

9
: +b§, then (on

) A
fine the vector field X on RX C by X = _;_ a,
i=1 9q

the hypersurface v = 0) the equation (1) becomes:

4



-74-

2 a A
= _+ _— = & >,
0 ( E aia 5 b e )V dV,X

So & at each point is in the tangent plane to the hypersurface at that

A
point, and the trajectories of X remain in the hypersurface. Moreover:

Proposition. For xo e RXC,let viIRXC >~ R with

A
<dv,X>=0
v _
5t | # 0, v(xo) 2 s
o
1
Then the function u;N_ —~ IR such that Pl sa e qn, u) = 0, constructed

o

for a suitable neighborhood Nx C C via the implicit function theorem,
o

is a solution of the P.D.E. (1).

Proof. By the construction of u,

A
D TR X =

A

0
0= ba, (veu) G

> R,

ov ov du )
—_— 3 1 for each i, so that we have

aql or 8q
A ! ov v = ov du v
=& ™ = —_— —_— = = —
0=<dv,X>= > a;50 +byr = D> -2, 5.5 *P 5
i=1 i i=1 i
Therefore for %V; # 0, u will be a solution of (1), q.e.d.

Let So be a submanifold of C of dimension n-1, and let uO:SO - R
be a smooth function. Through SO in IR X C pass the vertical hyper-
surface T = {(r,x)[ re R, xc¢ SO} . Define vO:T - IR by
vo(r,x) = uo(x) - r. Suppose that the characteristic field }2 is trans-

verse to T at a point X of the n-1 dimensional submanifold S on

which v, = 0. Then, it is immediate in local coordinates (see the
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N
figure below) that the trajectories of X through some neighborhood in

S of X determine an n-dimensional submanifold = of IR X C (locally

unique). Moreover, = is the graph of the desired solution u. For the

R 4

=

S (Note: in the figure, C is
the horizontal plane and the
IR axis is the vertical.)

A
fact that X is transversalto T at X implies that the function

A

5t ) is well-defined on a neighbor-

~
v(x, t) = vo(x) (where xe¢ T and X =

hood of X in IR X C and satisfies the conditions of the previous propo-

sition (-g—;—f =~ { # 0)

X
(e]

A

Any point of IR X C at which X is non-vertical lies on the graph of
such solutions. Explicitly, the hypersurface So C C may be described
as the locus where some smooth function f: C = IR is constant (i.e., as a
level hypersurface of f). Then the vertical hypersurface T is

T = {(z,y)[€(y) = (y )}
for e a fixed and y any point of C.

We have proved
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Theorem. For smooth functions CTERRRY a b:IRX C —- 1R let

S;)CC be defined by a point ¥y ¢ C and a smooth function f:C = IR as .
So = {yly ¢ C and £(y) = f(yo)} ;
If uo:So - IR is a smooth function satisfying the "transversality"

condition 5f
> afu (y)y) —— #0,
9q

then in some neighborhood of Yo there is a unique solution u of the

P.D.E. 2 a, _8_11_ = b with values u on S
iLi o o

aq

46, The General First Order P.D. E.

Consider an equation

1 n du ou
(1) E(u,q ..., 00 S e, ) =0

9q 9q
in an unknown function u:C — IR, where qi, . qn are local coordinates
in the configuration space C. We can regard the "equation" E as a
given (smooth) function E:IR X T'C = IR. The differential du is a func-

tion C = T°C; we also have d'u:C - R X T'C given locally as

1 n 1 n du du
{d s svasd ) = (8,8 55959 & =T e —n)
9q 9q
Thus the equation (1") becomes Eod'u=0. If r:IRX T C = IR is the
projection onthe first factor, then applied to (1") yields the ith
9q
derived P.D. E,.
n
oE 9 E E 0 9
= Pt X g T (=) =0 st
9q 8" j=t "Fj 3q" 8q
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Interchanging the order of partial derivatives, this is

n
9E 0du 9E 9E 9 du
(2) ar i+ i+28p J( i)—o'
9q 8- j=1 ) 9q 9q
By way of motivation, observe that the ith equation of (2) may now be
regarded as a quasilinear P.D.E. in the unknown P, = _8}_1;_ The
9q

characteristics of this quasilinear equation are then given by the

(n+1)-dimensional vector field (see above):

: . = Bk
9p. an aql or i’ 9r

A 9E 9 PE  OE 9
X= > + (- — )

The differential equations of these characteristics are then the n+tl

equations ;
dg” _ 0E _
dt - ap 3 - 19 eyl ,
J
; Ed
r_ dp~ _ oE JE
' dt i 7 o9r i
As i varies, the first n equations are the same., Note also that this
2 ) oE A
reduces to Hamilton's equations when —— = 0.
o9r g Lo

Our actual interpretation of (2) will be slightly different, as an ‘- ..

N

\\.3‘ e
equation on IRX T ' C itself, with characteristics in RX T 'C whlch
are solution curves of: - £t T,
dq’c _ BE dpi¢  5E 5E
at 8pj » Ta Ty, ar By
1

(3)
-2 P Bp

The third set of equations ig included since E = E(r,q,p) is constant along
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trajectories of the vector field

oE 0 oE T oE 0 8
(3 X_= > —+ > (-—— - p7—) +ZP
E 0 : - OT ap. a 31‘
59 3 g 3 T
on T"CXIR. For A ' @ @

9E " 0K OE JE 8E O0E _
LX = & z__+( B ZPJ ar Bp EP “or ¢

i 3 ?pj 9dd ] an 89 j ap
For our previous'cases, the last equation disappears, while the middle
equations all collapse to the equation for r (relabeled pic) from the
quasilinear case, giving trajectories "parallel" to those of the earlier
cases. We state our existence theorem in the form:

Theorem: Given in C a compact submanifold So of dimension
n-1 and initial values ug of u on So such that a certain determinant
(which appears as (5) below) does not vanish, then there exists an open
set UD So and a smooth function u:U = IR which satisfies E on U and
agrees on So with u .

It will be clear from the proof that the conditions on the initial sur-
face could be taken as before, and that the determinant condition cor-
responds to our previous transversality condition, with no loss of
applicability.

Proof. We operate in R X T ' C, where we already have defined
in (3) the characteristic curves. In the submanifold T of dimension
2n above So y we distinguish a surface S which will correspond to
UAT. This submanifold (diffeomorphic to SO) with local coordinates

n-1{ :
xi, s oy X embedded by v: So —ty B € T, should have
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K :
\_ Pomf" Gﬁ RXC

values P, P

Proof. In the configuration space C we have local coordinates

)
i

qi, g qn, an initial manifold So € C of dimension 1 and initial

values u(_):So - R. On RXT'C we have 2n+{ local coordinates

r;qi,. 5 s ,qn,pi,.. .,pn . We can define a map v:So - R X T°C; this
amounts to choosing "initial" values of r, q_i and ]_3j along So' Spe-
cifically we make rov = u qiov = qi and then we choose PyreeesPy

so that ;
E=0 , dr- > pdq =0

both along SO. The last condition on dr may be written in terms of

i -
local parameters x ,... ,xn b on the (n-1)-manifold So as
i i Bu Bt . . K
(4) 0= du - > pda = >, (—¢- > p —=)dx
o L= i = i.k
i=1 k 0ox i ox

Hence Py»e-+1P are determined uniquely along SO if
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oE oOE oE ‘
ap1 sz apn ,\t .
oo O L

1 n v .’) ,L.";A -

8q : 99 P

ox ox ]

8q1 aqn

8xn-1 8xn-1

This condition may be readily satisfied, since we can assume that the
first row is nowhere zero. (This amounts to assuming that the given

partial differential equation effectively involves at least one of the

ou

partial derivatives P, = T ). Given such a first row, the submani-
o 9E
fold So can be chosen to make (5) hold; for example, if Bp ;‘ 0 we
n
can choose the submanifold So given locally by the equation qn =0,
1 " 2
with local coordinates x1 =q 4y, X" : = qn 1; then the determinant (5)
; ; n 3E L . —
is simply (-1) 5o . Indeed, the condition (5) is then exactly the con- ‘ £
n b
dition that So be transversal to the projection of XE, =

We now have v: So - R X T'C, with image an (n-1)-manifold S in
R X T°C; moreover one can show S transversal to the characteristic
vector field XE' Therefore the trajectories of XE through points of S
fill up locally a manifold T of dimension n. Now E =0 holds along S,
so by the properties earlier established for characteristics it holds
along T. In other words, T gives the graph of functions

u, q ,...,qn,pi,...,pn on C (or on a neighborhood of So in C) which

1
Satisfy E(u,q ,---sqn;p11°'°7pn) = O'
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9
What remains to be verified is that pi = % for i=1,...,n on
’ i
this manifold T. If v:T = IR X T C is the inclusion map, this amounts
to showing that the induced {-form 6 = w¥(dr - 2 pidql) is zero on T.
n-1

1
We may calculate 6 in local coordinates x ,...,x (on So) and t

(the parameter along the trajectories of XE) as

et or aqi k or aqi
0= > (=% - 2o, —g)de + (G- 2p; ) et

The last term is zero by the equation (3) for the characteristics. It thus

remains to show that

_ Oor 9q = -
D = = -2 p —5 » k=1i,...,n1
ox ox
is zero. But Dk =0 on So by the choice of the initial values of P,

while a calculation with the equations (3) shows

Pk _BE ,BE | _ 3E _
ot =~ _ k 8r “k  0r "k
ox

This is a linear first order differential equation for Dk as a function of

the parameter t, with initial values zero on SO. Hence (by the unique-

ness of the solutions of such equations) D, =0, q.e.d..

k

47. Contact Manifolds. The use of the characteristic vector field X_
for the partial differential equation E raises the following question.
For a symplectic manifold any two smooth functions f and g have a

Poisson bracket given by

{f: g} = Lng = 'LX £
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On the manifold N = IR X T° C, each smooth function F:N = IR de-
termines (by characteristics, as in (3) above) a vector field XF' and
hence two such functions F and G have a "superbracket" defined as
XF(G). We wish to examine the geometric structure producing this
operation; it will turn out that this structure depends essentially on the
i-form dr - 2 pidqi used in the calculations to the last theorem.

Another approach is in terms of "elements". An "element" of the
space R X C is a point of this space plus a (non-vertical) hyperplane
through this point; for example, if C has dimension 2 an element is
just this: D .  In coordinates r, qi, o e qn any hyperplane through
the origin has an equation ar + aiqi, wn iy F anqn = 0 for syitable con-
stants ai; if is non-vertical precisely when a_ # 0, and in this case

n

we may take ao =1 and write r + a,iq1 P 3. = 0. Thus the hyper-

plane is determined by a s, which we now write as PyrererP)

{0
(in case n = 3 they are the direction cosines of the normal to the hyper-
plane). Thus an element is given by coordinates r, qi, vk ¥ qn, PyreessP s
and so is exactly a point in IR X T"C.

Take a curve c;IR =+ IR X T'C; it consists of Eoint; of RXT"C and
so maﬁr instead be regarded as a curve in IR X C consisting of elements

there. In the classical treatments, such a curve of elements is called

a characteristic strip when the i-form 6 = dr - 2 P, dqi is zero

along the strip.
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These elements are also used in geometrical optics in the space
IR X C. Huyghens principle for the propagation of a2 wave front W gives
the new wave front Wt after time t as the envelope of the spherical
waves centered at all the points of W. The transformation from W to
Wt then does not carry points of the space (say the space IR X C) into
points, but elements into elemer'zts, so is really a transformation of
IR X T C into itself. Since such a transformation of elements carries
tangent wave fronts V and W into tangent wave fronts, it is called
a "contact transformation”.

This pictorial representation of a contact transformation is again

connected with first order partial differential equations. One finds (for

!
example, see Lunebur_y, Mathematical theory of optics) that Maxwell's

equations yield wave fronts of the form
- = + 1 % 2 a_l'l". 2 2& < - 2 =
U(x,y,2) - ct =0 where  satisfies (ax) + (By) (az) n 0
in the medium whose "index of refraction" is n.

A contact manifold is a manifold N of dimension 2n+i with a dis-

tinguished one-form 6 such that 8A(de)” # 0 everywhere. We also
consider submanifolds ¥ :S = N such that V% = 0; one dimensional
h

such are called strips. A transformation (N,8) —= (N',0) is called

a contact transformation when there is a map p:N - IR for which
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Theorem. A mapping h is a contact transformation if and only if

it takes strips into strips.

h

Proof. => Trivial since R —> (N,8) > (N',8) .

<= Left to the reader.

Clearly, this notion of.a contact transformation is preserved under
composition; however, we also needed the characteristics before. Given

smooth mappings E and F of N into R, there were X_ defined by

E
(3) and XE(F) = [E,F], analogous to the Poisson bracket though not quite

satisfying the Jacobi identity,

S ]
Suppose we are given a mapping ¥:T (N) — T,(N), with

i )
=S - e——— @ <
B ) 3p. T N<—— T*N
i LS
i, 9 9
2(dp).=—7 *p; 57 \ /
dq N

9
Q(dr) = zpl F
i

In particular (by construction) &(dE) = XE. The matrix of ® will be

of the form:

Q p r

af 0 -I p

2®® = o\ 1 o
r 0 -p O

where @ and B are indices ranging from 1 to 2n+1. It will be of rank

2n. Since @(dr - z pidql) = = 2 P; 82
i

will be determined up to a scalar factor as the kernel of ®. At any point

9
+ zpia = 0, the form 6
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® is a twice contravariant tensor field on N, | We may define such a

pair (N, ®) to be a bracket manifold, where @ is determined up to

multiplication by a smooth p # 0. Given a configuration space C, we
may construct N = T'C X IR and define Qaﬁ as above, showing that
this matrix as defined in local coordinates transforms properly under
coordinate changes. In terms of ®, we have [E,F] = <dF, &(dE)>.
Thus the tensor @ on N is indeed sufficient to define the bracket

operation. For a mapping h to be a bracket transformation of (N, @)

into (N', ®'), we require that h*[E,F] = p[h*E,h*F] for some p: N— N!'
with p # 0 on N. We could instead require that h* multiply by a com-

mon p # 0 the relations between canonical coordinates:

.
[q,d1=0= [p,» pj]

3 i
»P.] = 6.
[a"p;1 = 5
i
[q ,I']—O [Plxr]‘Pi

We suggest that all contact manifolds are bracket manifolds. Note that
de(XE,XF) = [E,F].

We now develop the suggestion of the previous paragraph. References

are Cartan's Lecons sur les integrals invariants (1922) or the article

by John Gray in the "Annals of Mathematics" 69(1959), pp. 421-450.
Let (N,8) bea given contact manifold. We will define in terms of the
basis form 6 a vector field Ye and a bracket [ ]6: Since the matrix

of the 2-form d6 is of rank 2n, we may define a vector field Y by,

LY(de) =0 and <8,Y¥>=1.
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For it suffices to do this locally, where we may take 6 in the form

8 =dr - 2 pidq1 by the Darboux theorem, in which case we have

i ) = 9 )
de = Edq/\dpi, Y—E Y,1 : + E Yi 3p. +Zar
aq i
) 9
= i i = —_— 1 < _> = .
and LYdG 0 ifandonlyif Y = 2Z 57 with <86, Z 8r> Z

Equivalent would be an appeal to the fact that the (2n+1) forms on

N are spanned at each point by 6 A (de)n, so that any such form, and

in particular the form dE A (de)n may be represented uniquely as

def

)n for some smooth function h. The quantity h = YO(E)

h(r, p, )6A(de
is easily shown to be a derivation, and therefore determines a vector

field Ye. That this is the vector field of the previous paragraph is

verified by evaluation of <Ye,9> and iY de .
0

We claim that © also defines [E,F] by:

! - B, Flonde™ .

dE AdEA 6 A(de
The verification that the function so defined is [E, F] is by direct calcu-

lation in canonical coordinates:

n-1 i in-1
0A(de)" " = (dr - > p,dq’) A( > dp,Adq)
i i

= (dr - Z pidqi) A (n-1)! 2(-1)(n'1)(n‘2)/2 dpj(\dqa,

= (-1)("'1)(’1'2)/2(11-1): [ zdpﬁ\/\dqj\/\dr a Z(-i)n”'zpjdpjv\dq,

where dpﬁ\ is short for the product of all the dpi with only dpj omitted
1
from the product, while dq =dg A ... /\dqn with no terms omitted.

We have dE AdJF computed as:
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and by direct computation the nonzero terms of dEAdFA(6 A(de)n-i), the

only one without products 6A8 , are;

nH{n-1)(n-2)/2 , 9E 9F 8E oF 8E OF 3E OF, .
(-1) J(n'i)‘ 2( T %, “Bp, .1 ~Pidp, or  Pidr gp Jdpdandr
i 9q i i 9q i i

= (-1)n(n-1)/2(n-1)3'[E,F]dp,\ dqAdr according to our former definition. Since

8 A (dG)n is (-1)11(1r'1-1)/2 n! dpadqAdr, our two definitions of [E,F] have been

shown to agree (except for n! versus (n-1)!).
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CHAPTER VII. COVARIANT DIFFERENTIATION
By David Golber

The following material summarizes, in outline form, lectures on

covariant differentiation.

I (§48).  Riemannian and Pseudo-Riemannian Metrics

A. Definition, A Riemannian metric g on a manifold M assigns

(o) :
in a C ~ fashion to each point x of M an inner product g, on the tangent

vector space TXM. A pseudo-Riemannian metric g assigns, ina C

fashion, to each point x ¢ M a non degenerate symmetric bilinear form
T M.
g, on T_

Certain important results, especially III B. 3 below hold for pseudo-

Riemannian as well as Riemannian metrics. ~

B. Local expression: In a coordinate patch on M, we have coordi-
nates x1 oo X, and veétor fields B/Bxi, “w ey B/BXn. Let us use Fhe
abbreviation B/BXi = 8i for these fields. Sul?pose M has a Rieri;;nnian

{

or pseudo-Riemannian metric g. Then we can define C% functions on
the coordinate patch by

If g is Riemannian, then, for each x, the matrix (gij(x)) is positive
definite and symmetric. If g is pseudo-Riemannian, then (gij(x)) is

non-singular and symmetric.



